
Week 7 - Monday

 What did we talk about last time?
 Swing menus
 Started recursion

 Similarly, exponentiation is repeated multiplication
 Thus, 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥… � 𝑥𝑥

(𝑦𝑦 times)
 Base case (y = 0):
 𝑥𝑥0 = 1

 Recursive case (y > 0):
 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥𝑦𝑦−1

 There is a more efficient way to do this, but you'll have to take
COMP 2100 to talk about it

public static double power(double x, int y){

if(y == 0)
return 1.0;

else
return x * power(x, y - 1);

}

Base Case

Recursive
Case

 What if we want to sum the values from 1 up to n?
 ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 1 + 2 + 3 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛

 Base case (n = 1):
 ∑𝑖𝑖=11 𝑖𝑖 = 1

 Recursive case (n > 1):
 ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 𝑛𝑛 + ∑𝑖𝑖=1𝑛𝑛−1 𝑖𝑖

 True, this sum is 𝑛𝑛(𝑛𝑛+1)
2

, but don't worry about that

public static int sumUpTo(int n){

if(n == 1)
return 1;

else
return n + sumUpTo(n - 1);

}

Base Case

Recursive
Case

 We could play with strings, too
 What if I want to count the number of uppercase or lowercase

E's in a string s?
 Base case (length(s) = 0):
 eCount(s) = 0

 Recursive cases (length(s) > 0):
 If s starts with 'e' or 'E', eCount(s) = 1 + eCount(rest of s)
 Otherwise, eCount(s) = eCount(rest of s)

public static int eCount(String s){

if(s.length() == 0)
return 0;

else if(s.charAt(0) == 'e' || s.charAt(0) == 'E')
return 1 + eCount(s.substring(1));

else
return eCount(s.substring(1));

}

Base Case

Recursive
Cases

 Always look at the return types
 Are you returning the right thing in all cases?
 Do you have at least one base case to stop the recursion?
 Do you have at least one recursive case to move forward?
 Try not to assign variables
 Don't use loops (unless explicitly told to)
 Don't use member variables or global variables
 Don't try to do everything at once!
 Just unwrap one layer…

 Loops often use indexes to keep track of how far you are in the
process

 Sometimes that index is used only to determine when a loop is
going to terminate

 At other times, the index value is needed for work done in the loop
 Consider this loop to reverse an array:
for(int i = 0; i < array.length/2; ++i) {

int temp = array[i];
array[i] = array[array.length – i – 1];
array[array.length – i – 1] = temp;

}

 Recursion sometimes requires similar information that can be
passed along to each recursive call

 This information could be an index into a String or an array
 In graph or tree algorithms, it might be the parent node you

visited previously
 There are recursive methods with 10 or more parameters
 There's nothing wrong with that, provided that you actually

need them all

 What if we want to sum the values in an array called array?
 We need some extra information: current index
 Base case (index = length):
 Sum(from index onward):

0 (Nothing left to sum)
 Recursive case (index < length):
 Sum(from index onward):

array[index] + Sum(from index + 1 onward)

public static double sum(double array[], int index) {

if(index == array.length)
return 0.0;

else
return array[index] + sum(array, index + 1);

}

Base Case

Recursive
Case

 What if we want to reverse the contents of a string called s?
 We need some extra information: current index
 Base case (index = length):
 Reverse(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Reverse(from index onward):

s[length – index - 1] + Reverse(from index + 1 onward)

public static String reverse(String s, int index) {

if(index == s.length())
return "";

else
return s.charAt(s.length() – index – 1) +

reverse(s, index + 1);

}

Base Case

Recursive
Case

 All of the recursion we have shown so far doesn't do much after its
recursive call returns
 In actual fact, we have often waited for the return to add, multiply, or

concatenate a value
 If we simply returned the result of the previous method, it would be tail

recursion
 Some recursive methods do significant work before making a

recursive call
 Some recursive methods do significant work after making a

recursive call
 Some do both!

 All stacks (including the call stack) are first-in last-out (FILO)
structures

 In situations where we want to deal with things in backwards
order, we can use this natural reversing tendency

 For example, if we want to print out a String in reverse, we
can recurse through each character and print them as the
recursion returns

 Doesn't make sense yet?

 What if we want to print the contents of a string called s in
reverse?

 We need some extra information: current index
 Base case (index = length):
 ReversePrint(from index onward):

Print nothing
 Recursive case (index < length):
 ReversePrint(from index onward):

ReversePrint(from index + 1 onward)
Then print s [index]

public static void reversePrint(String s, int index)
{

if(index < s.length()) {
reversePrint(s, index + 1);
System.out.print(s.charAt(index));

}

}

(Empty)
Base Case

Recursive
Case

 We can even use this approach to reverse a string in a
different manner than we did before

 Base case (index = length):
 Backwards(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Backwards(from index onward):

Backwards(from index + 1 onward) + s[index]

public static String backwards(String s, int index) {

if(index == s.length())
return "";

else
return backwards(s, index + 1) + s.charAt(index);

}

Base Case

Recursive
Case

 More recursion

 Keep reading Chapter 19
 Keep working on Project 2
 InSocial Risk Advisors are looking for a consultant
 They need help linking together some services with Zapier
 Should be a small amount of work, but it might open up other

opportunities
 If interested, send a resume to Jim Waterwash
 Get his contact information from me

	COMP 2000
	Last time
	Questions?
	Project 2
	Recursion Examples
	Exponentiation
	Code for exponentiation
	Summing the first n numbers
	Code for summing up to n
	It doesn't have to be mathematical
	Code for counting E's
	Recursive hints
	Recursion Tricks
	Comparison to loops
	Extra information
	Summing an array
	Code for summing an array
	Reversing a String
	Code for reversing a String
	Waiting for the recursion to come back
	Using the stack to go in reverse
	Printing a String in reverse
	Code for printing a String in reverse
	Reversing a String (the remix)
	Remixed code for reversing a String
	Mid-Semester Evaluations
	Upcoming
	Next time…
	Reminders

