
Week 7 - Monday

 What did we talk about last time?
 Swing menus
 Started recursion

 Similarly, exponentiation is repeated multiplication
 Thus, 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥… � 𝑥𝑥

(𝑦𝑦 times)
 Base case (y = 0):
 𝑥𝑥0 = 1

 Recursive case (y > 0):
 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥𝑦𝑦−1

 There is a more efficient way to do this, but you'll have to take
COMP 2100 to talk about it

public static double power(double x, int y){

if(y == 0)
return 1.0;

else
return x * power(x, y - 1);

}

Base Case

Recursive
Case

 What if we want to sum the values from 1 up to n?
 ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 1 + 2 + 3 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛

 Base case (n = 1):
 ∑𝑖𝑖=11 𝑖𝑖 = 1

 Recursive case (n > 1):
 ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 = 𝑛𝑛 + ∑𝑖𝑖=1𝑛𝑛−1 𝑖𝑖

 True, this sum is 𝑛𝑛(𝑛𝑛+1)
2

, but don't worry about that

public static int sumUpTo(int n){

if(n == 1)
return 1;

else
return n + sumUpTo(n - 1);

}

Base Case

Recursive
Case

 We could play with strings, too
 What if I want to count the number of uppercase or lowercase

E's in a string s?
 Base case (length(s) = 0):
 eCount(s) = 0

 Recursive cases (length(s) > 0):
 If s starts with 'e' or 'E', eCount(s) = 1 + eCount(rest of s)
 Otherwise, eCount(s) = eCount(rest of s)

public static int eCount(String s){

if(s.length() == 0)
return 0;

else if(s.charAt(0) == 'e' || s.charAt(0) == 'E')
return 1 + eCount(s.substring(1));

else
return eCount(s.substring(1));

}

Base Case

Recursive
Cases

 Always look at the return types
 Are you returning the right thing in all cases?
 Do you have at least one base case to stop the recursion?
 Do you have at least one recursive case to move forward?
 Try not to assign variables
 Don't use loops (unless explicitly told to)
 Don't use member variables or global variables
 Don't try to do everything at once!
 Just unwrap one layer…

 Loops often use indexes to keep track of how far you are in the
process

 Sometimes that index is used only to determine when a loop is
going to terminate

 At other times, the index value is needed for work done in the loop
 Consider this loop to reverse an array:
for(int i = 0; i < array.length/2; ++i) {

int temp = array[i];
array[i] = array[array.length – i – 1];
array[array.length – i – 1] = temp;

}

 Recursion sometimes requires similar information that can be
passed along to each recursive call

 This information could be an index into a String or an array
 In graph or tree algorithms, it might be the parent node you

visited previously
 There are recursive methods with 10 or more parameters
 There's nothing wrong with that, provided that you actually

need them all

 What if we want to sum the values in an array called array?
 We need some extra information: current index
 Base case (index = length):
 Sum(from index onward):

0 (Nothing left to sum)
 Recursive case (index < length):
 Sum(from index onward):

array[index] + Sum(from index + 1 onward)

public static double sum(double array[], int index) {

if(index == array.length)
return 0.0;

else
return array[index] + sum(array, index + 1);

}

Base Case

Recursive
Case

 What if we want to reverse the contents of a string called s?
 We need some extra information: current index
 Base case (index = length):
 Reverse(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Reverse(from index onward):

s[length – index - 1] + Reverse(from index + 1 onward)

public static String reverse(String s, int index) {

if(index == s.length())
return "";

else
return s.charAt(s.length() – index – 1) +

reverse(s, index + 1);

}

Base Case

Recursive
Case

 All of the recursion we have shown so far doesn't do much after its
recursive call returns
 In actual fact, we have often waited for the return to add, multiply, or

concatenate a value
 If we simply returned the result of the previous method, it would be tail

recursion
 Some recursive methods do significant work before making a

recursive call
 Some recursive methods do significant work after making a

recursive call
 Some do both!

 All stacks (including the call stack) are first-in last-out (FILO)
structures

 In situations where we want to deal with things in backwards
order, we can use this natural reversing tendency

 For example, if we want to print out a String in reverse, we
can recurse through each character and print them as the
recursion returns

 Doesn't make sense yet?

 What if we want to print the contents of a string called s in
reverse?

 We need some extra information: current index
 Base case (index = length):
 ReversePrint(from index onward):

Print nothing
 Recursive case (index < length):
 ReversePrint(from index onward):

ReversePrint(from index + 1 onward)
Then print s [index]

public static void reversePrint(String s, int index)
{

if(index < s.length()) {
reversePrint(s, index + 1);
System.out.print(s.charAt(index));

}

}

(Empty)
Base Case

Recursive
Case

 We can even use this approach to reverse a string in a
different manner than we did before

 Base case (index = length):
 Backwards(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Backwards(from index onward):

Backwards(from index + 1 onward) + s[index]

public static String backwards(String s, int index) {

if(index == s.length())
return "";

else
return backwards(s, index + 1) + s.charAt(index);

}

Base Case

Recursive
Case

 More recursion

 Keep reading Chapter 19
 Keep working on Project 2
 InSocial Risk Advisors are looking for a consultant
 They need help linking together some services with Zapier
 Should be a small amount of work, but it might open up other

opportunities
 If interested, send a resume to Jim Waterwash
 Get his contact information from me

	COMP 2000
	Last time
	Questions?
	Project 2
	Recursion Examples
	Exponentiation
	Code for exponentiation
	Summing the first n numbers
	Code for summing up to n
	It doesn't have to be mathematical
	Code for counting E's
	Recursive hints
	Recursion Tricks
	Comparison to loops
	Extra information
	Summing an array
	Code for summing an array
	Reversing a String
	Code for reversing a String
	Waiting for the recursion to come back
	Using the stack to go in reverse
	Printing a String in reverse
	Code for printing a String in reverse
	Reversing a String (the remix)
	Remixed code for reversing a String
	Mid-Semester Evaluations
	Upcoming
	Next time…
	Reminders

